Geospace: Geomagnetic Environment

Ground-level magnetic perturbations, dB/dt (D. Welling)

Magnetopause Location and Geosynchronous Orbit Crossings (Y. Collado Vega)

Geomagnetic Indices (M. Liemohn)

Ground-level magnetic perturbations dB/dt validation

Improved validation suite to include:

- 6 events from SWPC study
 - increase length of Halloween storm (second day),
 - add time before each event to precondition models (can compare
 - with old runs without long preconditioning)
- have more magnetometer stations
 - cover isolated spikes (signal seen at single station),
 - regional assessments, sensitivity discussion,
 - 10-second cadence reasonable
 - dBx/dt, dBy/dt, dB_H/dt or dB/dt_H declination or X/Y or H/D components
 - compare latitude of peak dB/dt or southern edge of auroral oval
 - 2D image processing: auroral images vs. DeltaB maps, FAC
 - integrated quantities?
 - threshold selection: hit or false-positive

Challenges Before Geoelectric Field Validation

Need quality thresholds:

- model and observations need to agree to some degree (amplitude, location within 1000 km?) before incorporating ground conductivities
- Observations of Geomagnetic Electric Field (GEF) are local:
 - lack of long-term stations large baseline (>10 km) measurements
 - need locally observed magnetic fields to model electric fields
- Separation of magnetic observation into induced field and external source
 - Frequency-dependent ground conductances,
 - [electric power] network impedance network geometry influences (lines ending at coasts)
 - Earthscope project to get high-resolution continental United States coverage within next two years
 - Coast effects Baltic sea not negligible

dB/dt validation

Add new events - overlap with Geomagnetic indices group

```
    Nov. 6-11, 2004
    monthly time period with 3 storms:
    first 2/3 (two storms) as preconditioning phase,
    last 1/3 (one storm) for validation?
```

Keep Halloween storm with caveats:

- magnetic field variations observed
- solar wind plasma velocity/density poorly known
- event may give poorer skills for models

dB/dt validation - long-term goals

- Work towards longer time periods —> accumulate years from operational models
- More extreme events -
 - stress test with synthetic extreme event
 - derive bounds of possible activity (spatial, amplitude)
- Advanced event breakdown by processes (sudden commencement, main phase, recovery, substorm,...)
- Bin by solar wind driver (Bx,By,Bz,Pram,N,Vx)
 - Advanced Metrics
 - Correlation Coefficient
 - Error quantification
 - Bias

All of this will be prepared in a White Paper

Magnetopause Location and Geosync. Orbit Crossings team

Issues

- Ionospheric conductance effects on magnetopause location underinvestigated.
- MP compression events should be well reproduced by MHD models, but are not.
- MHD models give different standoff positions of the dayside magnetopause for the same solar wind conditions.
- Effects from the ring current should be taken into consideration.
- Check sensitivity of subsolar and flank magnetopause to changes in model parameters.
- Analysis of differences in solar wind propagation algorithms.
- Uncertainty in upstream conditions. Comparison of observations by multiple solar wind monitors.
- Understanding physical processes causing the magnetopause motion change.

User Needs: Magnetopause crossings at geosynchronous orbit immerse satellites in the magnetosheath in a field and plasma environment that is different from normal operations

Magnetopause

Long term collaboration with other teams:

- Ionospheric conductances effects on the magnetopause erosion
- Radiation belt electron losses from magnetopause
- Magnetopause location for determining the last-closed-drift-shell

Metrics and Analysis quasi-developed and to be:

- RMS, Prediction Efficiency, Cross Correlation, Eventbased studies with probability detection
- Database of magnetopause crossings from different missions and Geosync. Orbit crossings
- Quantify speed of changing inward and outward motion of the boundary

Magnetopause

What to do next:

- Publish results already obtained
- Correlate magnetopause position with those observed by different missions.
- Models used will determine how the magnetopause is localized
- Metrics needed will be different for operational users than science users
- Try to understand these differences better and what metrics are useful
- Study what inner parameters make a difference in the different models
- Run the same models with the input of different solar wind monitors and find the error bars
- Important factors to be considered for Geosync. Orbit crossings tool: orbit location, solar wind input, and the inner parameters of the models
- Compile plans into White Paper

Geomagnetic Indices Team

- Event selection: we have a bunch on our list
 - We'd like for this list to overlap with those from the dB/dt crew and auroral precipitation crew
 - Some models, especially big first-principles codes, do all three of these elements in a single run
 - Our list will probably be long and then we'll trim it down
- Month-long interval: we want to choose a month with an intensity distribution of several key indices that matches the solar-cycle-level distribution
 - Several good candidates, but we need analysis
 - This will probably be completed after the meeting

Geomagnetic indices - Event list

- 6 SWPC events
- Additional events:

```
April 6-7, 2000,
March 31, 2001,
July 22-27, 2004,
November 9-10, 2004,
May 14, 2005,
March 1, 2011,
September 17, 2011,
March 9, 2012,
March 17, 2013,
March 17, 2015.
```

- We're close...
 - We're picking half a dozen storm events
 - We're picking a month-long interval
 - We're picking metrics: the big three for us are trend, goodness, and event capture.

Geomagnetic Indices

- Ultimate goal: white paper on generally-applicable metrics for models predicting geomagnetic indices
 - A report that serves as a community reference for benchmarking a new or updated index predictor
- Metric/skill scores:
 - Pearson Correlation Coefficient
 - Mean Error, Mean Absolute Error
 - Root Mean Square Error
 - Prediction Efficiency (normalized comparison relative to mean of data)
 - Contingency tables: 2-4 threshold levels, to be determined based on analysis of intensity distributions of several key indices